

The Impact of Text Orientation on Form Priming Effects in Four-Character Chinese Words

Huilan Yang University of Western Ontario Jingjun Chen Hunan University of Science and Technology

Giacomo Spinelli and Stephen J. Lupker University of Western Ontario

Does visuospatial orientation influence repetition and transposed character (TC) priming effects in logographic scripts? According to perceptual learning accounts, the nature of orthographic (form) priming effects should be influenced by text orientation (Dehaene, Cohen, Sigman, & Vinckier, 2005; Grainger & Holcomb, 2009). In contrast, Witzel, Qiao, and Forster's (2011) abstract letter unit account argues that the mechanism responsible for such effects acts at a totally abstract orthographic level (i.e., the visuospatial orientation is irrelevant to the nature of the relevant orthographic code). The present experiments expanded this debate beyond alphabetic scripts and the syllabic Kana script used by Witzel et al. to a logographic script (Chinese). Experiment 1 showed masked repetition and TC priming effects with primes and targets presented in both the conventional left-to-right horizontal orientation and the vertical top-to-bottom orientation, replicating Witzel et al. Experiment 2 showed masked repetition and TC priming effects even when both the primes and targets were presented in the right-to-left orientation, a rare but existent text orientation in Chinese. In Experiment 3, the primes, but not the targets, were presented in the right-to-left orientation. Priming effects were again obtained regardless of the fact that the primes and targets appeared in different orientations. Experiment 4, which involved primes and targets presented in a completely novel bottom-to-top orientation, also produced a TC priming effect. These results support abstract letter/character unit accounts of form priming effects while failing to support perceptual learning accounts.

Keywords: form priming, text orientations, masked priming, lexical decision

How do people successfully code letter identity and letter position information in a presented word? One approach to this issue involves proposing a "channel specific" coding scheme, which is based on the idea that a letter's specific position is directly coded, even before its identity is coded. The multiple read-out model (Grainger & Jacobs, 1996) and the interactive-activation model (McClelland & Rumelhart, 1981) are examples of models making this type of assumption. What is most relevant to the present discussion is that models making this assumption predict that transposed letter (TL) nonwords (e.g., jugde) are no more similar to their base words (i.e., JUDGE) than are substituted letter (SL) nonwords (e.g., jupte) and, therefore, the two types of nonwords should produce equivalent priming effects for their base word in masked priming experiments. More recent behavioral (e.g., Lété & Fayol, 2013; Perea & Lupker, 2003a, 2003b, 2004; Perea, Winskel, & Gómez, 2018), and event-related potential (ERP) results (e.g., Ktori, Kingma, Hannagan, Holcomb, & Grainger, 2014; Vergara-Martínez, Perea, Gómez, & Swaab, 2013), however, have failed to support this prediction. That is, many studies have shown that TL nonwords appear to be considerably more similar to their base words than are SL nonwords. For example, Perea and Lupker (2003a), among others, have reported a TL priming advantage; that is, that jugde is a better prime for JUDGE than junpe is. (Note that this difference could not be because of the orthographic overlap of the matching letters [i.e., ju - - e], because both jugde and junpe contain those letters in their correct positions.)

The alternative view that has emerged is that there is considerable flexibility in coding letter position as embodied in a number of newer models of orthographic coding/word recognition (Davis, 2010; Gómez, Ratcliff, & Perea, 2008; Norris, 2006; Whitney, 2001). This alternative approach can be thought of as one involving more "relative-position-based" coding schemes. Examples are the Open-Bigram Models (Grainger & Van Heuven, 2003; Whit-

This article was published Online First September 13, 2018.

Huilan Yang, Department of Psychology, University of Western Ontario; Jingjun Chen, Department of Psychology, Hunan University of Science and Technology; Giacomo Spinelli and Stephen J. Lupker, Department of Psychology, University of Western Ontario.

This research was partially supported by Natural Sciences and Engineering Research Council of Canada Grant A6333 to Stephen J. Lupker and MOE (Ministry of Education in China) project of humanity and social science (grant 16YJCZH067) to Rong Luo. We thank Alexander Taikh for his assistance in analyzing the data.

Correspondence concerning this article should be addressed to Huilan Yang or Stephen J. Lupker, Department of Psychology, University of Western Ontario, London, Ontario, N6A 5C2, Canada. E-mail: yhuilan@uwo.ca or lupker@uwo.ca

ney, 2001), the Spatial-Coding Model (Davis, 1999, 2010), and the Overlap Model (Gómez et al., 2008). In Open-Bigram Models (Grainger & Van Heuven, 2003; Whitney, 2001), the basic assumption is that letter recognition involves detectors for sets of bigrams, both adjacent and nonadjacent bigrams. For example, the word JUDGE would activate bigram nodes for JU, UD, DG, GE, as well as JD, DE, UG. Reversed bigrams, such as DU would not be activated according to most versions of this type of model. This approach can explain TL priming effects, because TL primes share more bigrams with their target words than do SL primes.

An alternative explanation is provided by the Spatial-Coding Model. Davis (1999, 2010) proposed a spatial-coding scheme in which letter position is coded by the relative activation of positionindependent letter nodes. The initial letter has the lowest position code, while the final letter has the highest position code, with the set of letters forming a spatial pattern that represents the relative activation of letters in the different positions. The spatial codes for TL primes and their base words will be more similar than those of SL primes and their base words contain the same letters and, therefore, the same letter units are being activated during processing.

TL priming effects can also be explained by the Overlap Model (Gómez et al., 2008). The Overlap Model assumes that the coded letter positions for each letter can be considered to be normally distributed over the different positions, with the mean of the distribution being the letter's actual position. That is, in the word "judge," the letter "d" will be activated to the largest degree in Position 3, and to a lesser degree in Positions 2 and 4 and even, to some degree, in Positions 1 and 5 (Gómez et al., 2008). The existence of the "g" and the "d" in the TL nonword prime jugde, therefore, provides some evidence that letter string being read is, indeed, JUDGE, evidence not provided by the SL nonword prime jupte.

Other models that can also explain TL priming effects include the Bayesian Reader Model (Norris & Kinoshita, 2012) and the Time and Retinotopic Space (LTRS) Model (Adelman, 2011). What the previous models generally do not concern themselves with, however, is the question of the influence of visuospatial coordinates on the nature of orthographic coding. One hypothesis concerning the effects of visuospatial coordinates on word recognition was proposed by Grainger and Holcomb (2009), who argued that letter detectors are based on their relative location with respect to eye fixation on the horizontal meridian. Letters in words that are not presented horizontally require a transformation of the retinotopic coordinates into a special coordinate system to allow the activation of open bigrams. This special coordinate system for analyzing nonhorizontal words develops through exposure experience and is affected by the characteristics of the language being read. This type of account is essentially a perceptual learning account.

Dehaene et al. (2005) also posit that perceptual learning mechanisms are involved in how the orthographic code is created because they propose that there are dedicated neurons that only represent frequent, informative letters and bigrams. For instance, people may have detectors for CH, which often appears in English words, but not for CZ, which rarely appears in English words. This proposal is supported by the finding that early retinotopic areas produce more activation in response to letters than to rotated versions of letters (Chang et al., 2015). These types of hypotheses suggest that form priming effects (e.g., the TL priming effect) would be altered by changing the text's orientation.

In contrast, Witzel et al. (2011) argued that the mechanism responsible for form priming effects acts at a totally abstract level, a level at which visuospatial orientation no longer influences word processing. The letter positions are transformed from a spatial representation (either horizontal or vertical) into an abstract ordinal representation (first-to-last), which becomes the orthographic code. According to this hypothesis, people would show form priming effects regardless of the presented text's orientation, because the input letters would be rapidly transformed into this first-to-last code, and that code would then be used to access the lexicon regardless of the visuospatial orientation of the original stimulus.

To determine which type of hypothesis provides a better explanation of the nature of the orthographic code, Witzel et al. (2011) examined TL (and transposed character-TC) priming effects for Japanese-English bilinguals and English monolinguals by using a masked priming paradigm. These two groups seemed to provide a fruitful contrast because Japanese readers are used to reading both horizontally presented and vertically presented text, whereas English readers are not. The question was whether the two groups showed TL/TC priming effects when the stimuli were presented in both horizontal and vertical orientations. As expected, Japanese readers showed TL/TC priming effects in both horizontal and vertical presentation conditions. More centrally, native English speakers also showed TL priming effects when the text was presented in the vertical orientation (even though they lacked experience with vertical text), providing support for abstract letter unit accounts.

Perea, Marcet, and Fernández-López (2018) extended this investigation using Spanish words by comparing the magnitude of form priming effects in two different vertical orientations, marquee and 90° rotated orientations. Those authors found significant and equivalent masked form priming effects for primes and targets presented in the two orientations. These results are also potentially inconsistent with perceptual learning accounts but are quite consistent with approaches that treat letter/character codes as abstract representations (i.e., not tied to retinal positions).

In contrasting these two types of accounts, what is relevant to note, however, is that perceptual learning accounts do not directly predict null priming when a letter string is presented in a unique orientation. Even if the stimulus is rotated, causing the mental representation to be rotated, processing of the stimulus will continue and will normally be successful. What is the key prediction of these types of accounts is that there will be larger priming effects for canonically (i.e., horizontally) presented letter strings than letter strings presented in other orientations because noncanonical strings cannot take advantage of structures such as the neurons that are assumed to be dedicated to processing familiar letter pairs. Note also that these types of accounts make an additional prediction; that is, that transposition effects will be larger for horizontally presented letter strings (i.e., stimuli able to take advantage of such neurons) than other types of horizontally presented stimulus strings; for example, strings of symbols such as &%\$#@, a prediction that has been supported in the literature (e.g., Duñabeitia, Dimitropoulou, Grainger, Hernández, & Carreiras, 2012; Massol, Duñabeitia, Carreiras, & Grainger, 2013). Note further that the specific comparison between horizontally presented words and nonhorizontally presented words was not evaluated either by Perea, Marcet, et al. (2018) or by Witzel et al. (2011) for their English readers.

The Present Research

Witzel et al.'s (2011) Japanese words were written in Katakana script. Although Katakana script is syllabic rather than alphabetic, it is much closer to alphabetic script than logographic scripts like Chinese. Each Katakana character represents a syllable or a combination of syllables (i.e., a mora), and, hence, represents a phonological unit. In contrast, Chinese characters have more complex internal structures, which are made up of between 1 and 36 strokes that are usually arranged into subcharacter "radicals," with those radical units being related directly to semantic and phonological information (Taft, Zhu, & Peng, 1999). Nonetheless, Chinese readers do show TC and other types of form priming effects (Gu & Li, 2015; Gu, Li, & Liversedge, 2015; Taft et al., 1999; Yang, 2013). Therefore, Chinese allows an opportunity to determine whether the results Witzel et al. and Perea, Marcet, et al. (2018) reported for alphabetic and syllabic languages can be extended to logographic languages. Because Perea et al. reported no difference between marquee and rotated words, we chose to use the marquee format for our vertical presentations in order to maintain consistency with Witzel et al.

What is worth noting at this point, however, is that most characters in Chinese are both syllables and morphemes (Zhou, Marslen-Wilson, Taft, & Shu, 1999). Thus, the possibility exists that what would appear to be form priming effects in Chinese may not be purely orthographic but may also be because of overlap at the morphemic and/or syllabic levels. That is, even if Chinese characters are transposed, they are, typically, able to provide appropriate morphemic and syllabic information even though that information would appear in incorrect positions. For example, 突如其来(/tū rú qí lái/, suddenly) is a Chinese four-character word that, when the middle characters are transposed 突其如来(/tū qí rú lái/), produces a character string that still contains the morphemes and syllables contained in the target word. If the reading system does have some tolerance for transpositions of morphemes and/or syllables, those dimensions could be partially contributing to any TC priming effects that one might observe in Chinese. We will return to this issue in the General Discussion.

The fact that the existence of TC priming effects has been established in Chinese is important because TC priming effects are not universal. Velan and Frost (2009), for example, found that Hebrew TC primes did not facilitate target word processing but, in fact, produced an inhibitory effect when the transposition of adjacent characters formed a legal root morpheme. This result has been taken to mean that the lexical space in Hebrew is encoded according to morphological root families, rather than according to orthographic structure, which may also be true of Chinese. Indeed, Grainger and Holcomb (2009) have argued that the special coordinate system is likely to be influenced by the characteristics of the language being investigated. It is, therefore, important that form priming effects and, in particular, TC priming effects, have been observed in Chinese because those types of results make the question of whether the effects vary as a function of orientation a viable one to investigate.

In the present research, therefore, we used Chinese words in an effort to explore form priming effects in logographic languages as a function of visuospatial orientation. What's also important to note is that Chinese readers, like Witzel et al.'s (2011) Japanese readers, do have some experience reading words in different orientations. Specifically, Chinese readers are familiar with left-to-right horizontal and top-to-bottom vertical text and, as well, they do have some (very limited) experience with right-to-left horizontal text while totally lacking experience with bottom-to-top text.

Experiment 1 involved a masked priming paradigm examining TC and repetition priming effects for native Chinese readers using text presented in both standard horizontal and vertical orientations. Based on the results from Witzel et al. (2011), we expected to find significant priming effects in both orientations. In Experiment 2, we used the masked priming paradigm to test whether Chinese readers would show a priming effect when the stimuli were presented in a right-toleft horizontal orientation. According to a perceptual learning account, although Chinese readers might show priming when the text is presented in a vertical orientation, there should be substantially less evidence of priming effects when the text is presented in this rather unfamiliar right-to-left orientation. In contrast, according to abstract letter/character unit accounts, there is no obvious reason that priming effects would not be found in any orientation in which reading can proceed somewhat normally (e.g., the right-to-left horizontal orientation). To jump ahead, priming was found with right-to-left text in Experiment 2 and, in Experiment 3, we examined whether those effects might disappear when the target and prime were not presented in the same orientation. Specifically, in Experiment 3 the primes were presented in a right-to-left horizontal orientation with the targets being presented in a standard left-to-right horizontal orientation. Finally, in Experiment 4, primes and targets were presented in a bottom-to-top vertical orientation (which is not one that exists in Chinese culture). According to any perceptual learning account, there is no possibility that priming effects due to the existence of dedicated neurons would emerge, while abstract letter/character unit accounts would not be inconsistent with any priming effects that might arise.

Experiment 1

Method

Participants. Forty native Chinese speakers who had normal or corrected-to-normal vision participated in this experiment. All indicated that they were highly proficiency in reading Simplified Chinese. They were all undergraduate students at Hunan University of Science and Technology (Xiangtan, Hunan, China). Twenty participants received the horizontal text condition first, and 20 participants received the vertical text condition first. All participants were given a small gift for their participation.

Materials. The stimuli for Experiment 1 were four-character simplified Chinese words. One hundred ninety-two low frequency words were chosen to serve as target words and another 192 low frequency words were selected from the *SUBTLEX-CH* database (Cai & Brysbaert, 2010). For the target words, their mean word frequency (per million) was 4.37 (range = 1.25-51.63). For the unrelated word primes, their mean word frequency (per million) was 4.41 (range = 1.22-37.83). All of the frequency values were obtained from the *SUBTLEX-CH* database (Cai & Brysbaert, 2010). There is no signification of the second second

icant different in frequency between the target words and the unrelated word primes, t(382) = -0.07, p = .947.

In the repetition condition, the related prime was the target itself, and the control prime was the unrelated word prime selected for that target (e.g., 有所不同(ABCD)-有所不同(ABCD) versus 总的来说 (EFGH)-有所不同(ABCD)). The primes and targets used different font styles and sizes (35-point Arial font for primes and 40-point Song font for targets). In the TC condition, the related primes were character strings in which the two middle characters in the target were transposed, whereas in the control condition for the TC condition (the SC condition), the two middle characters were substituted with two new characters (e.g., 有不所同[ACBD]-有所不同[ABCD] versus 有扑走同[AJKD]-有所不同[ABCD]). The target words were divided into two sets, and their use in the horizontal versus vertical orientation conditions was counterbalanced. In addition, there were four counterbalanced lists in each orientation condition, with 24 stimuli in each condition. We also created 384 orthographically legal nonwords (half to serve as target nonwords, the other half to serve as unrelated nonword primes for the nonword targets). These nonword stimuli were derived from the nonwords found in the Chinese Lexicon Project (Tse et al., 2017). The primes for the nonword targets were created in a similar fashion as the primes for the word targets (1/4 were repetition nonword primes, 1/4 were unrelated nonword primes, 1/4 were TC nonword primes and 1/4 were SC nonword primes), except that there was only one list of primes and targets.¹ For the word stimuli, the primes and their associated targets are listed in the Appendix.

Procedure. The participants were seated in a quiet room for testing. Eprime 2.0 software was used for data collection (Psychology Software Tools, Pittsburgh, PA; see Schneider, Eschman, & Zuccolotto, 2002). Each trial began with a mask (which consisted of eight 50 ms, and then the target which was presented for 3,000 ms or until the participant responded. All the stimuli were presented in the center of the screen. Text presentation orientation (horizontal vs. vertical) was constant within a block and the order of the blocks was counterbalanced over participants (see Figure 1 for examples of a word presented in the various text orientations used in these experiments). Before the start of each block, participants performed 16 practice trials involving the stimulus orientation to be used in that block. Participants were asked to decide whether each presented (target) character string is a meaningful real word or a meaningless nonword. They were asked to press the "J" button if the presented target is a word and the "F" button if it is a nonword as quickly and as accurately as possible. This research was approved by the Western University REB (Protocol # 108835).

Figure 1. Examples of Chinese text presented in different text orientations.

Results

Latencies for incorrect responses were excluded from the latency analyses, as were latencies that were shorter than 300 ms (3.9% of the data). The latencies from the correct trials and the error rates were analyzed using generalized linear mixed-effects modeling in R Version 3.4.3 (R Development Core Team, 2015), treating subjects and items as random effects and treating orientation (horizontal vs. vertical), prime type (repetition vs. transposition), and priming (related vs. control) as fixed effects (Baayen, 2008; Baayen, Davidson, & Bates, 2008). Post hoc analyses were conducted by using the Ismeans package, Version 2.27-61 (Lenth, 2016), with Tukey's Honestly Significant Difference (HSD) adjustment for multiple comparisons. Prior to running the model, R-default treatment contrasts were changed to sum-to-zero contrasts (i.e., contr.sum) to help interpret lower-order effects in the presence of higher-order interactions (Levy, 2014; Singmann & Kellen, 2018). The model was fit by maximum likelihood with the Laplace approximation technique. The lme4 package, Version 1.1-15 (Bates, Mächler, Bolker, & Walker, 2015), was used to run the generalized linear mixed-effects model and obtain probability values.

A generalized linear mixed-effects model was used in the latency analyses in all the present experiments instead of a linear mixed-effects model because generalized linear models, unlike linear models, do not assume a normally distributed dependent variable and can, therefore, better accommodate the typically positively skewed distribution of reaction time (RT) data (Balota, Aschenbrenner, & Yap, 2013; Lo & Andrews, 2015).² A Gamma distribution was used to fit the raw RTs, with an identity link between fixed effects and the dependent variable (Lo & Andrews, 2015). Note that convergence tests for generalized linear mixedeffects models in the current version of lme4 tend to generate

¹ For the interested reader, we report the analyses of our nonword data for all of these experiments. However, because there was only one list of nonword primes and targets in each experiment (i.e., nonword targets were not counterbalanced over conditions), the nonword results should be interpreted very cautiously.

Following a suggestion of one of the reviewers, we elected to use the generalized linear mixed-effects model and analyze raw RTs rather than following the more common practice of using linear mixed-effects models and normalizing raw RTs with a reciprocal transformation. The main reason for doing so was because nonlinear transformations systematically alter the pattern and size of interaction terms, casting doubt on the reliability of analyses of interactions. We did, however, replicate the analyses reported in the present article using linear mixed-effect models with inverse-transformed RTs (invRT = 1,000/RT) as the dependent variable. Those analyses replicated the pattern found with generalized linear mixedeffects models, with two exceptions, one of which is potentially notable, the interaction between Priming and Orientation in Experiment 1. To preview, the priming effect was 12 ms larger for the horizontal versus the vertical orientation words in Experiment 1. While this difference led to a significant interaction between Priming and Orientation in the linear mixed-effects model with transformed RTs, $\beta = -0.014$, SE = 0.004, t = -3.874, p < .001, it did not in the generalized linear mixed-effects model with raw RTs. Traditional mean-based ANOVAs also failed to return a significant Priming imes Orientation interaction in both the subject, F(1,39) = 3.10, p = .086, and item, F(1,191) = 2.39, p = .124, analyses, suggesting that the inverse transformation of RTs in the linear mixedeffects model might have artificially exaggerated the difference in priming across orientations. The second exception is the 16-ms difference between the classic TC prime condition and the repetition prime condition in Experiment 3. That contrast was not a central one in that experiment.

many false positives (Bolker, 2018).³ The statistical model for the latency analysis was: $RT = glmer (RT \sim orientation * primetype * priming + (1|subject) + (1|item), family = Gamma(link = "identity")). The statistical model for the error rate analysis was: Accuracy = glmer (accuracy ~ orientation * primetype * priming + (1|subject) + (1|item), family = "binomial"). The mean RTs (in milliseconds) and percentage error rates for both the horizontal and vertical orientations are shown in Table 1 for the word targets.$

Word trial latencies. The default model failed to converge even when fitting was restarted from the apparent optimum. We then proceeded to rerun the model using all available optimizers. Because all optimizers returned very similar values, we concluded that convergence warnings were false positives (see lme4 convergence help page). We report results only from the BOBYQA optimizer, which managed to converge.

There was no significant main effect of prime type, $\beta = -1.562$, SE = 1.516, z = -1.03, p = .303; however, a significant main effect of priming was observed, $\beta = -29.757$, SE = 1.474, z = -20.19, p < .001. Responses following related primes were significantly faster (608 ms) than were responses following control primes (669 ms). The main effect of orientation was also significant, $\beta = -33.828$, SE = 1.457, z = -23.21, p < .001, because latencies were longer with vertical text (677 ms) than with horizontal text (599 ms). The interaction between Priming and Prime Type was significant, $\beta = -7.573$, SE = 1.467, z = -5.16, p < -5.16.001, with the repetition priming effect being significantly larger than the TC priming effect. In the repetition priming condition, latencies following repetition primes (599 ms) were significantly faster than latencies following unrelated primes (674 ms), $\beta = -37.330 \ SE = 2.081, \ z = -17.941, \ p < .001.$ When considering the TC priming effect, the SC primes (663 ms) led to significant slower latencies than did the TC primes (617 ms), $\beta = -22.184$, SE = 2.078, z = -10.675, p < .001. No other effects reached significance (all ps > .10).

Word trial accuracy. The main effect of prime type was significant, indicating an advantage for the repetition conditions

Table 1

Mean Lexical Decision Latencies (Reaction Times [RTs], in Milliseconds) and Percentage Error Rate for Words in Experiment 1

	Repe	Repetition		TC	
Variable	RT	%E	RT	%E	
Horizontal					
Related	557	2.5	575	3.3	
Control	637	3.8	628	5.8	
Priming	80^{***}	1.3***	53***	2.5***	
Vertical					
Related	640	2.4	660	3.3	
Control	711	4.9	698	4.5	
Priming	71***	2.5***	38***	1.2***	

Note. TC = transposed character; %E = percentage error rate. The control primes for repetition primes were unrelated primes and for TC primes the control primes were substitution primes. The overall mean RT and error rate of the nonword targets in horizontal orientation were 719 ms and 3.8% respectively; The overall mean RT and error rate of the nonword targets in vertical orientation were 820 ms and 3.3% respectively.

*** p < .001.

(3.4%) over the TC conditions (4.2%), $\beta = 0.132$, SE = 0.064, z = 2.055, p = .040. In addition, there was a priming effect with the related primes (2.9%) leading to fewer errors than the unrelated primes (4.7%), $\beta = 0.280$, SE = 0.065, z = 4.326, p < .001. Neither the main effect of orientation nor any interaction was significant (all ps > .10).

Nonword trial latencies. The default model converged after restarting it from the apparent optimum. The only significant effect was that of orientation, $\beta = -46.605$, SE = 1.864, z = -25.01, p < .001, with faster responses to horizontally presented nonwords (719 ms) than to vertically presented nonwords (820 ms). No other main effect or interactions reached significance (all ps > .10).

Nonword trial accuracy. The main effect of priming was significant, with a small but significant reverse priming effect, $\beta = -0.207$, SE = 0.082, z = -2.516, p = .012. Control primes produced a slightly smaller error rate (2.8%) than did related primes (4.2%), The only significant interaction was Priming × Orientation, $\beta = -0.181$, SE = 0.063, z = -2.892, p = .004, indicating that the significant reverse effect of priming arose in the horizontal orientation condition ($\beta = -0.388$, SE = 0.103, z = -3.785, p = .003), but not in the vertical orientation condition ($\beta = -0.026$, SE = 0.104, z = -0.253, p = .960). There were no other main effects or interactions (all ps > .05).

Discussion

The results of Experiment 1 were quite similar to those of Witzel et al. (2011): Chinese native readers showed significant repetition and TC priming effects when stimuli were presented in both horizontal and vertical orientations. Unlike Japanese readers, however, Chinese readers were faster (78 ms) when processing horizontal text than vertical text, as well as showing a small, although nonsignificant, overall priming advantage (12 ms) with horizontal text. This pattern is consistent with the idea that Chinese readers may have had somewhat more experience in reading horizontal text than vertical text and, therefore, may have a reading system that is better tuned for processing horizontal text. The main point to be taken from Experiment 1, however, is that the finding that both repetition and TC priming effects were obtained in both text orientations, orientations that are familiar to Chinese readers, is consistent with both abstract letter/character unit accounts and perceptual learning accounts. The way to distinguish between accounts, therefore, is to examine the nature of priming effects for Chinese readers when processing text presented in a rarely experienced orientation, for example, a right-to-left horizontal orientation.

As noted, it is not the case that Chinese words are never written in the right-to-left horizontal orientation. Text of this nature occurs on signs at some temples and in the top scroll in a couplet.

³ In all analyses, when convergence warnings were returned, the troubleshooting process followed the recommendations made by the lme4 authors (see the convergence help page in R), including restarting the fit from the apparent optimum position and rerunning the model with all available optimizers. The R syntax used to restart the model from the previous fit and rerun the model with all available optimizers is the following:

model.restart <- update(model, start = getME[model, c("theta", "fixef")])
source(system.file["utils", "allFit.R", package = "lme4"])
model.all <- allFit(model)</pre>

However, the right-to-left horizontal orientation is rarely experienced in modern Chinese culture. Therefore, a perceptual learning account would predict that Chinese readers should show little evidence of repetition or TC priming when reading text written in a right-to-left orientation, while effects of this sort would not be inconsistent with a generic abstract letter/character unit account. What should be noted at this point is that right-to-left primes do not appear to produce priming of either left-to-right or right-to-left targets in English (Davis, Kim, & Forster, 2008).

Experiment 2

Method

Participants. Forty-four Chinese native speakers who had normal or corrected-to-normal vision participated in this experiment. As in Experiment 1, all indicated that they were highly proficiency in reading Simplified Chinese. They were all graduate or undergraduate students either from Western University (London, Ontario, Canada) or Hunan University of Science and Technology (Xiangtan, Hunan, China). They were paid \$5 for their participation or given a small gift. None had participated in Experiment 1.

Materials. Ninety-six of the target words (and their unrelated word primes) used in Experiment 1 were used in Experiment 2. The word frequency was matched between the target words and unrelated word primes. Twenty-four targets were primed by a repetition prime (e.g., 同不所有[DCBA]-同不所有[DCBA]), 24 by an unrelated word prime (e.g., 说来的总[HGFE[-同不所有[DCBA]), 24 by a TC prime (e.g., 同所不有[DBCA]-同不所有[DCBA]), and 24 by an SC prime (e.g., 同走扑有[DJKA]-同不所有[DCBA]). There were four counterbalanced lists for the word stimuli. Ninety-six of the target nonwords (and their unrelated nonword primes) used in Experiment 1 were used in Experiment 2. The primes for the nonword targets were created in a similar fashion as the primes for the word targets, except that there was only one list of primes and targets. All the other details were the same as in Experiment 1.

Procedure. The procedure was the same as in Experiment 1. The only difference was that all the stimuli, both primes and targets, were presented in the right-to-left horizontal orientation only. Before the start of the experiment, participants performed 16 practice trials with right-to-left oriented primes and targets.

Results

Latencies for incorrect responses were excluded, as were latencies that were shorter than 300 ms (3.9% of the data). Data were collapsed across study location (Canada vs. China) because of the fact that there was no three-way interaction between Orientation, Prime Type, and Priming. The statistical model for the latency data was: $RT = glmer (RT \sim primetype^* priming + (1|subject) + (1|tem), family = Gamma(link = "identity"). In the error rate analysis, the statistical model was: Accuracy = glmer (accuracy ~ primetype* priming + (1|subject) + (1|subject)$

Table 2

Mean Lexical Decision Latencies (Reaction Times [RTs], in Milliseconds) and Percentage Error Rate for Words in Experiment 2

	Repetition		TC	
Right-to-left horizontal	RT	%E	RT	%E
Related	810	3.4	815	3.3
Control	893	4.0	856	4.8
Priming	83***	.6	41***	1.5

Note. TC = transposed character; %E = percentage error rate. The control primes for repetition primes were unrelated primes and for TC primes the control primes were substitution primes. The overall mean RT and error rate of the nonword targets were 1068 ms and 5.6%, respectively. *** p < .001.

Word trial latencies. There was a significant main effect of prime type, $\beta = 8.812$, SE = 2.922, z = 3.02, p = .003, and a significant main effect of priming, $\beta = -29.907$, SE = 3.097, z = -9.66, p < .001, because responses were faster overall in the TC conditions and for related primes. The interaction between Priming and Prime Type was also significant, $\beta = -8.342$, SE = 3.058, z = -2.73, p = .006, with the repetition priming effect (83 ms) being significantly larger than the TC priming effect (41 ms). In the post hoc analysis, there was a significant repetition priming effect, $\beta = -38.25$, SE = 4.468, z = -8.561, p < .001. In addition, in the TC condition, the TC primes led to significantly shorter latencies than the SC primes, $\beta = -21.565$, SE = 4.234, z = -5.093, p < .001.

Word trial accuracy. There was a marginal effect of priming ($\beta = 0.155$, SE = 0.085, z = 1.814, p = .070), indicating a tendency for targets following related primes to elicit fewer errors (3.4%) than targets following control primes (4.4%). Neither the main effect of prime type nor the interaction approached significance (all ps > .10).

Nonword trial latencies and accuracy. Neither of the main effects nor the interaction approached significance in either analysis (all ps > .05).

Discussion

The results of Experiment 2 essentially paralleled those of the horizontal and vertical orientation conditions in Experiment 1. That is, not only were both repetition and TC priming effects observed, the priming effect sizes were quite similar in size to those in Experiment 1. While being consistent with a generic abstract letter/character unit account, these results provide little support for a perceptual learning account of repetition and TC priming effects would predict that these effects would not arise or would be quite weak when the stimuli are presented in such an unfamiliar orientation.

An alternative explanation of the effects in Experiment 2, and one that would not necessarily be problematic for a perceptual learning account, is that those effects might have been an artifact of the demands of the task. Specifically, in line with a transferappropriate processing idea (e.g., Franks, Bilbrey, Lien, & McNamara, 2000; Kolers & Perkins, 1975; Kolers & Roediger, 1984), one could argue that, in order to deal with unfamiliar right-to-left targets, participants may have developed some sort of processing strategy for mentally reversing the order of the characters in the target, a strategy that was then also applied to prime processing. Experiment 3 was an attempt to examine this idea. The specific question was, will Chinese readers still show repetition and TC priming effects when the target is presented in the conventional left-to-right orientation following a right-to-left oriented prime (a result that, like the priming effects observed in Experiment 2, does not arise in English - Davis et al., 2008)?

Experiment 3

Method

Participants. Sixty Chinese native speakers who had normal or corrected-to-normal vision and who reported that they were highly proficient in reading Simplified Chinese participated in this experiment. They were all undergraduate students from Western University (London, Ontario, Canada) who participated for course credit in their introductory psychology course. None had participated in the previous experiments.

Materials. One hundred of the target words (and their unrelated word primes) used in Experiment 1 were used in Experiment 3. The word frequency was matched between the target words and unrelated word primes. Twenty targets were preceded by a (backward) repetition prime, that is, one that involves the same characters but presents them in a right-to-left orientation (e.g., 同不所有 [DCBA]-有所不同[ABCD]), and 20 were preceded by an unrelated prime (i.e., a totally different word) that was also presented in the right-to-left orientation (e.g., 说来的总[HGFE]-有 所不同[ABCD]). Three different prime types were used to investigate the TC priming effect. Twenty pairs involved what would be thought of as a (backward) classic TC prime; that is, one in which the prime is presented right-to-left but the middle two characters are transposed (e.g., 同所不有[DBCA]-有所不同[ABCD]). Note, however, that doing so creates a prime in which the middle two characters are in the same position in the prime and target and, therefore, is technically a prime involving a transposition of the first and fourth characters. Twenty pairs involved what could be thought of as a (backward) classic SC prime, that is one in which the prime was presented in a right-to-left orientation and the middle two characters are substituted (e.g., 同走扑有[DJKA]-有所不同[ABCD]). Finally, 20 primes were used that may be a better control for evaluating TC priming. These primes, external substitution primes, maintain the middle two characters of the prime in their appropriate positions (as in the classic TC primes discussed above) but replace the first and fourth characters of the target (e.g., 走所不扑[JBCK]-有所不同[ABCD]).

There were five counterbalanced lists for the word stimuli. One hundred of the target nonwords (and their unrelated nonword primes) used in Experiment 1 were used in Experiment 3. Just as in the word conditions, these nonword targets were preceded by five different types of primes and, as in the previous experiments, there was only one list of nonword primes and targets. The other details were the same as in Experiment 1.

Procedure. The procedure was the same as in Experiment 1, the only difference being that all the primes were presented in the right-to-left horizontal orientation, while all the targets were pre-

sented in the normal (left-to-right) horizontal orientation. Before the start of the experiment, participants performed 20 practice trials involving right-to-left oriented primes and left-to-right oriented targets.

Results

Latencies for incorrect responses were excluded, as were latencies that were shorter than 300 ms (3.0% of the data). Unlike Experiment 1 and Experiment 2, the design of Experiment 3 involved a single fixed effect, Prime Type, with five levels (repetition, unrelated, classic TC, classic SC, external SC). The function analysis of variance (ANOVA) in the car package Version 2.1–2 (Fox & Weisberg, 2016) was used to test the significance of the Prime Type factor. The statistical model for the latency data was: $RT = glmer (RT \sim primetype + (1|subject) + (1|tem), family = Gamma(link = "identity")). In the error rate analysis, the model was: Accuracy = glmer (accuracy ~ primetype + (1|subject) + (1|subject) + (1|subject) + (1|tem), family = "binomial"). The other details were the same as in Experiment 1. The mean RTs (in milliseconds) and percentage error rates for Experiment 3 are shown in Table 3 for the word targets.$

Word trial latencies. The default model converged after restarting it from the apparent optimum. There was a main effect of prime type, $\chi^2 = 185.98$, p < .001. In the post hoc analysis, participants showed a significant repetition priming effect (52 ms), $\beta = -53.607$, SE = 6.715, z = -7.984, p < .001. Significant TC priming was observed when comparing the classic TC prime condition with both the external SC prime condition (51 ms), $\beta =$ 48.013, SE = 5.252, z = 9.141, p < .001, and the classic SC prime condition (56 ms), $\beta = 54.252$, SE = 5.507, z = 9.852, p < .001. The classic SC prime condition did not differ from the external SC prime condition, $\beta = -6.239$, SE = 5.300, z = -1.177, p = .765. Note that the classic TC prime condition produced latencies that were numerically, but not significantly, shorter than those in the repetition prime condition, $\beta = 13.555$, SE = 5.832, z = 2.324, p = .137. Finally, the mean latency in the unrelated prime condition was longer than the mean latency in the external SC prime condition, $\beta = -19.149$, SE = 5.980, z = -3.202, p = .012, but did not differ from the mean latency in the classic SC prime condition, $\beta = -12.911$, SE = 6.148, z = -2.100, p = .220.

Word trial accuracy. The main effect of prime type was significant, $\chi^2 = 10.224$, p = .037. In the post hoc analysis, participants showed a significant repetition priming effect (1.9%), $\beta = 0.817$, SE = 0.279, z = 2.929, p = .028. Repetition primes

Table 3

Mean Lexical Decision Latencies (Reaction Times [RTs], in Milliseconds) and Percentage Error Rate for Words in Experiment 3

Condition	RT	%E	
Repetition prime	664	1.8	
Unrelated prime	716	3.7	
Classic transposed prime	648	2.7	
Classic substitution prime	704	3.5	
External substitution prime	699	3.1	

Note. The overall mean RT and error rate of the nonword targets were 881 ms and 3.6%, respectively.

(1.8%) also elicited less errors than classic SC primes (3.5%), although only marginally so, $\beta = -0.762$, SE = 0.281, z = -2.710, p = .052.

Nonword trial latencies. The default model converged after restarting it from the apparent optimum. There was a main effect of prime type, $\chi^2 = 11.86$, p = .018. The post hoc analysis revealed that, compared with repetition primes (899 ms), external SC primes (877 ms) led to faster latencies, $\beta = -20.632$, SE = 7.170, z = -2.877, p = .033, and so did (although only marginally so) classic TC primes (875 ms), $\beta = -21.289$, SE = 7.907, z = -2.692, p = .055. No other contrasts reached significance (all ps > .1).

Nonword trial accuracy. The main effect of prime type was not significant, $\chi^2 = 6.01$, p = .199.

Discussion

To avoid inducing participants to adopt a processing strategy for dealing with unfamiliar right-to-left targets, one based on mentally reversing the order of the characters in the target which then would also be applied during prime processing, the targets in Experiment 3 were presented in the conventional left-to-right orientation. The most important result in this experiment was that there was a significant (backward) repetition priming effect. Repetition primes presented in the completely opposite (right-to-left) orientation primed targets presented in the standard left-to-right horizontal orientation.

Experiment 3 also provided evidence of a (backward) TC priming effect when measured against both of our control conditions. Because these patterns generally parallel those from Experiment 2, a reasonable conclusion would be that the results in Experiment 2 were not because of participants adopting a strategy involving a mental reversal of the order of the target's (and prime's) characters. Rather, they are more likely because of the abstract nature of representations in the orthographic code.

The main question of Experiment 3 concerned whether rightto-left primes produce priming for left-to-right targets in Chinese, just as they did for right-to-left targets in Experiment 2 (but not as what they appear to do in English; Davis et al., 2008). Whereas the answer is that they do produce priming, it may be worth noting that the size of the "repetition" effect in Experiment 3 (52 ms) was slightly smaller than the size of the parallel effect in Experiment 2 (83 ms). Part of that difference was likely because of the fact that responding was approximately 150 ms faster in Experiment 3, although that is probably not the only reason for the difference in the effect sizes. Rather, right-to-left primes are probably at least a bit more orthographically similar to the right-to-left targets used in Experiment 2 than to the left-to-right targets used in Experiment 3.

What is also potentially relevant is that, in contrast to the results in Experiment 2, the "repetition" priming effect and what we take to be the TC priming effect were equivalent in size in Experiment 3. In an attempt to gain a bit more of an understanding of the principles involved here, it may be of some value to examine the impact of transposing characters in Experiment 3 a bit more closely.

Essentially, right-to-left oriented primes with their middle two characters then transposed (what we are calling classic TC primes, e.g., DBCA) led to faster latencies than both what we are calling classic SC primes (e.g., (DJKA) and primes involving the same middle characters in the same positions as in the target but having different exterior characters, external substitution primes (JBCK). As noted, these TC priming effects are a bit hard to characterize because all three of these prime types can be interpreted in more than one way. As a result, it's not at all clear which of these two latter prime types would be the most appropriate control condition in this situation (or, if neither of these is appropriate, what the appropriate condition would be). That is, the DBCA-DJKA contrast could be characterized as representing the value of having correct characters in the two middle positions rather than representing the impact of a right-to-left written TC prime. Similarly, the DBCA-JBCK contrast could be characterized as representing the impact of transposing the first and fourth characters in a left-to-right prime.

When thought about in those ways, however, one seems to arrive at an illogical conclusion. This second contrast (DBCA-JBCK) produced a 51 ms priming effect (699-648), which when thought about as representing the impact of a left-to-right oriented prime, implies that transposing the exterior two characters (rather than replacing them) was quite impactful. In contrast, the difference between the classic SC prime condition and the completely unrelated condition (DJKA-HGFE) was a nonsignificant 12 ms (704–716) suggesting that the impact of transposing the two exterior characters is minimal at best. Needless to say, it's hard to reconcile these two conclusions. Therefore, in the present situation (i.e., in Chinese), the more reasonable conclusion is that there is something crucial about the prime and target sharing all their characters even if those characters are not in the same positions in the prime and target (i.e., the (backward) classic TC prime, DBCA, or the (backward) repetition prime, DCBA, work well whereas primes containing 2 of the 4 target characters, JBCK and DJKA, do not).

In Experiment 4, we sought to push the contrast between perceptual learning and abstract letter/character unit accounts one step further by presenting the primes and targets in a completely unfamiliar bottom-to-top orientation. According to any perceptual learning account, there should be very little evidence of priming effects from these prime-target pairs, whereas a generic abstract letter/character unit account would seem to have the ability to explain such an effect.

Experiment 4

Method

Participants. Thirty-four Chinese native speakers who had normal or corrected-to-normal vision and who reported that they were highly proficient in reading Simplified Chinese participated in this experiment. They were all undergraduate students from Western University (London, Ontario, Canada) who participated for course credit in their introductory psychology course. Fourteen of these participants had participated in Experiment 3.

Materials. Ninety-six of the target words (and their unrelated word primes) used in Experiment 1 were used in Experiment 4. The word frequency was matched between the target words and the unrelated word primes. Unlike in Experiment 1, only TC priming was investigated with 48 targets being primed by a TC prime (e.g., 有不所同[ACBD]-有所不同[ABCD]) and 48 by an SC prime (e.g., 有扑走同[AJKD]-有所不同[ABCD]). There were

two counterbalanced lists for word stimuli. Ninety-six of the target character nonwords (and their unrelated nonword primes) used in Experiment 1 were used in Experiment 4. As with the word targets, the nonword targets were preceded either by a TC prime or an SC

prime and, as in previous experiments, only one list of nonword primes and targets was used. The other details were the same as in Experiment 1.

Procedure. The procedure was the same as in Experiment 1 with the only difference being that all the stimuli (primes and targets) were presented in the bottom-to-top orientation. Before the start of the experiment, participants performed eight practice trials.

Results

Latencies for incorrect responses were excluded, as were latencies that were shorter than 300 ms (3.8% of the data). The design of this experiment involved a single fixed effect, Prime Type, with two levels (TC vs. SC). The final statistical model for the latency data was: $RT = glmer (RT \sim primetype + (1|subject) + (1|tem))$, family = Gamma(link = "identity")). In the error analysis, the final model was: Accuracy = glmer (accuracy ~ primetype + (1|subject) + (1|tem)), family = "binomial"). The other details were the same as in Experiment 1. The mean RTs (in milliseconds) and percentage error rates for Experiment 4 are shown in Table 4 for the word targets.

Word trial latencies and accuracy. The 50-ms difference between the TC prime (869 ms) and the SC prime (919 ms) conditions was significant, $\beta = 25.788$, SE = 3.379, z = 7.63, p < .001. The TC primes also led to significantly fewer errors (2.9%) than did the SC primes (4.5%), $\beta = -0.257$, SE = 0.099, z = -2.583, p = 0.01.

Nonword trial latencies and accuracy. In the latency data, there was a significant reverse main effect of prime type, with the SC primes (1108 ms) leading to faster latencies than the TC primes (1146 ms), $\beta = -18.148$, SE = 6.362, z = -2.85, p = .004. There was no significant main effect of prime type in the accuracy analysis (p > .10).

Discussion

Although the stimuli in Experiment 4 were presented in an entirely novel orientation, participants still produced a clear TC priming effect, which was essentially the same size as the TC priming effects in Experiment 1 and 2. This result once again provides support for the argument that these types of effects are much better able to be explained in terms of an abstract letter/

Table 4

Mean Lexical Decision Latencies (Reaction Times [RTs], in Milliseconds) and Percentage Error Rates for Words in Experiment 4

Condition	RT	%E
Transposed prime	869	2.9
Substitution prime	919	4.5
Priming	50***	1.6*

Note. The overall mean RT and error rate of the nonword targets were 1,127 ms and 3.6%, respectively.

 $p^* p < .05. p^* < .001.$

character unit account rather than in terms of a perceptual learning account.

General Discussion

Four masked priming experiments involving the presentation of stimuli in different orientations were carried out to investigate the role of text orientation in orthographic processing and to provide a basis for contrasting perceptual learning-based accounts of form priming in Chinese against accounts based on abstract letter/ character units. The results of Experiment 1 were that repetition and TC priming effects were observed for stimuli presented in both horizontal and vertical orientations, paralleling Witzel et al.'s (2011) results. The only difference between experiments was that, unlike Witzel et al.'s Japanese readers whose performance was similar with horizontal and vertical words, our Chinese readers were considerably (72 ms) faster and their priming effects were slightly (12 ms), but not significantly, stronger with horizontal text than with vertical text, a pattern that would be consistent with either type of account. In Experiment 2, Chinese native readers showed masked repetition and TC priming effects when the text was presented in a right-to-left orientation. In Experiment 3, we still obtained strong repetition and, what we take as, TC priming effects when left-to-right targets followed right-to-left primes. Finally, even though we used an entirely new text orientation in Experiment 4, participants produced a TC priming effect that was virtually the same size as those in Experiments 1 and 2, providing probably the clearest evidence against a perceptual learning account of our form priming effects.

More specifically, taken together, our finding of priming in all situations investigated and essentially equivalent priming in the repetition conditions and in the TC conditions in Experiments 1, 2 and 4 are inconsistent with Grainger and Holcomb's (2009) special coordinate system account and Dehaene et al.'s (2005) LCD model. Rather, the processes which mediate our priming effects appear to occur at an abstract level of representation, in line with Witzel et al.'s (2011) abstract letter unit account. This account assumes that the orthographic code is created by transforming a visuospatial code into an ordinal code. Thus, regardless of the text orientation, what the reader takes as the beginning letter/character is assigned to the first position, and the next letter/character is assigned to the second position, and so on. Crucially, the presented text orientation is not directly related to this orthographic code, as readers appear to convert the visuospatial code into an abstract code quite rapidly and doing so may very well be required before lexical processing can advance.

Perhaps surprisingly, we were even able to expand this conclusion to the situation in which the prime, but not the target, was written right-to-left. What is also important to recognize is that these effects (and the TC priming effect with the bottom-to-top orientation) were demonstrated with Chinese four-character words. It's not inevitable that such effects would be found with other scripts in other languages. In fact, in English, Guerrera and Forster (2008) found that, although there was a reasonably large priming effect when eight-letter targets contained all the letters of the prime but with only two of those eight letters in the same position in the prime and target, they failed to detect a priming effect with more extreme transposition primes, such as when edisklaw and isedawkl primed the target SIDEWALK. That is, their data support the idea that there is a limit to the amount of distortion in the ordering of letters/characters that the reading system can tolerate.

At mentioned previously, there would appear to be one examination of the question of the system's ability to tolerate backward primes and targets in the English language literature. Davis et al. (2008) presented backward targets (e.g., ECAF), with each target preceded by either a forward prime (e.g., FACE) or a backward prime (e.g., ECAF). Although forward primes produced a facilitation effect, backward primes did not (in contrast to our results in Experiment 2), even though the targets were also presented in the backward direction. This result implies that there is a basic difference in the level of tolerance for position distortions in the orthographic code between Chinese and English readers, although it could also reflect a difference in how reverse spelling targets are processed in the two languages. The latencies, for example, in Davis et al. were approximately 200 ms longer than in the present Experiment 2 suggesting that Davis et al.'s subjects had considerably more difficulty dealing with right-to-left written words than our subjects did.4

The question is, therefore, whether the backward priming effects observed here can be successfully accommodated within any of the current abstract letter/character accounts. That is, can any of those models mentioned previously (e.g., Adelman, 2011; Davis, 2010; Gómez et al., 2008; Grainger & Van Heuven, 2003; Whitney, 2001) actually explain the large priming effects we observed from primes presented in noncanonical orientations (Experiments 2, 3, and 4)? At present, the answer would seem to be no. Most of those accounts do not currently have a mechanism for tolerating the level of distortion in terms of letter positions found in our primes and targets, which, of course, means that the null priming effect reported by Davis et al. (2008) is consistent with those models. Our results, in contrast, do raise problems for those models even though, in theory, they would all seem to have the ability to explain priming of this sort if the appropriate assumptions were made. Rather than expanding any of the models (by adding new assumptions) in an attempt to account for the present data, however, what seems to be a more fruitful direction to go would be to ask whether our results might have arisen at a level other than the orthographic level. For example, as noted previously, one could propose that the effects may be morphemic or syllabic/phonological effects if it's reasonable to assume that priming based on morphemic or syllabic/phonological relationships is capable of tolerating distortions in the ordering of that type of information.

More specifically, Chinese characters usually represent a single morpheme, and transposing morphemes will, most of the time, still maintain the morphemic relationship between the prime and target. There is a common consensus that processing morphologically complex words in English does require some type of morphemic processing (Crepaldi, Rastle, Coltheart, & Nickels, 2010; Crepaldi, Rastle, Davis, & Lupker, 2013; Drews & Zwitserlood, 1995; New, Brysbaert, Segui, Ferrand, & Rastle, 2004), and there is no reason to believe that similar conclusions would not apply to Chinese. Indeed, Zhang and Peng's (1992) Chinese word recognition model is based on the idea that there is a separate morpheme level involved in processing during word recognition. Supporting evidence for that conclusion includes Taft, Zhu, and Peng's (1999) demonstration that the latencies for transposable Chinese compound words (multiple morpheme words in which transposing the morphemes forms a different word) were longer in a lexicaldecision task than for nontransposable compound words. Taft et al. interpreted their results as suggesting that Chinese characters have position free representations, that is, that position information is highly flexible when processing character level representations, a conclusion that would be compatible with the present results.

Additional support for this idea comes from Wu, Tsang, Wong, and Chen (2017) who showed that target words (e. g.,公園, city park) induced a similar P200 component when preceded by primes in which a shared character plays a similar morphemic role (e.g., 公眾, citizen) versus primes in which that shared character in the prime and target does not (e.g., 公雞, rooster). However, an N400 component was only produced when the targets were preceded by morphemically related primes. The difference between these two prime types could not be because of a difference in orthographic similarity because the two primes share the same character with the target (e.g., 公, city), nor is it likely to have been because of semantics, because semantic primes not sharing a morpheme (e.g., 草地, lawn) produced only very small effects in both the behavioral and ERP data. This study suggests that morpheme level processing in Chinese does occur during an early stage of visual word recognition, consistent with models like the hybrid model (Diependaele, Sandra, & Grainger, 2009) and the Lemma model (Taft & Nguyen-Hoan, 2010). In the latter model, lemmas are immediately and unconsciously encoded once the morpho-orthographic decomposition has finished, prior to the whole word processing stage. The implication for the present data is that the unusual orientation priming effects for four-character Chinese words observed here could possibly have been morphemic effects if the morphemic processing system can tolerate the level of character transposition involved in our experiments.

As an alternative, Chinese characters are also syllables and reversing their order changes only the order of the word's phonology. Some studies have indicated that phonological priming effects do arise in Chinese which has led some researchers to suggest that the syllable is a functional unit in spoken word production in Chinese (Schiller, 1999; You, Zhang, & Verdonschot, 2012). For example, in You et al.'s (2012) examination of syllable priming effects during Chinese spoken word production, their results indicated that when primed by CV (密,/mi4/, dense) primes, CV targets (迷你,/mi2.ni3/, mini)) were named faster than when they were primed by CVN (N represents word endings involving n/or/ ng/, e.g., 敏,/min3/, agile), CVG (G represents word endings with glide sound, e.g., 卖,/mai3/, sale) or unrelated primes (耍,/shua3/, play). Qu, Damian, and Li (2016) also found syllable facilitation priming effects in a picture naming task, whereas Zhou and Marslen-Wilson (2009) found mixed pseudohomophones (e.g., 严革,/yan2ge2/), which retain one character in the same position as the target (e.g., 严格,/yan2ge2/, terrible) produced an inhibitory effect in comparison to control nonword primes. In contrast, however, Wong, Wu, and Chen (2014) showed no significant differ-

⁴ Morris and Still (2012) also investigated backward prime priming effects in English. However, their experiment differs from Davis et al.'s (2008) and the current investigation in that their backward primes were themselves words (e.g., flow-WOLF) and that those primes produced an inhibitory, rather than a faciliatory, effect. One could certainly imagine that, as Morris and Still suggest, their inhibition effect is a lexical competition phenomenon and, hence, it's not clear to what extent Morris and Still's results would be relevant to the results reported here.

ence between a syllabic related prime condition and an unrelated prime condition (in either behavioral or ERP results), which caused them to argue that the role of phonology is limited during Chinese word recognition. Everything considered, it does appear that the answer to the question of whether the syllable is a functional unit in Chinese visual word processing is still not entirely clear and, therefore, whether (and how) shared syllables can produce inhibitory or faciliatory priming is yet to be determined. In general, however, what should be noted is that the previous studies do not rule out the possibility that our priming effects from primes in different orientations may have had somewhat of a syllabic basis.

In this context, it is worth noting that Witzel et al. (2011) used Japanese kana words as their experimental stimuli. Each kana character is essentially a syllable. Therefore, one could also propose that what Witzel et al. have shown is a transposed syllable/ phonological priming effect rather than an orthographically based TC priming effect. Potentially arguing against that idea are two articles showing that transposed phoneme nonwords are not effective primes in Japanese. That is, Perea and Pérez (2009) failed to find any masked transposed phoneme priming effects (a.re.mi.kaa.me.ri.ka vs. a.ma.ro.ka-a.me.ri.ka) with Japanese Kana words in two experiments. Furthermore, Perea, Nakatani, and van Leeuwen (2011) found similar fixation times for transposed-consonant nonwords (a.re.mi.ka $[7 \nu \ge \pi]$ -a.ri.me.ka $[7 \nu \ge \pi]$) versus orthographic control nonwords (a.ke.hi.ka [アケヒカ]-a.me.ri.ka $[7 \times J]$ in the periphery in an event boundary paradigm. A counter argument, however, is that there is good evidence that the mora (essentially a syllable) rather than the phoneme is the basic phonological unit in Japanese (e.g., Ida, Nakayama, & Lupker, 2015). Therefore, it isn't clear what implications Perea and colleagues' lack of phoneme transposition effects would have for the character transposition effects reported by Witzel et al.

Nonetheless, as Grainger (2018) has argued, orthographic processing is the main interface between lower-level visual coding and higher-level linguistic processing in essentially all languages (Grainger, 2016; Grainger, Dufau, & Ziegler, 2016). Consistent with this idea, all of the models assuming a "relative-positionbased" coding scheme also assume that letter identity and letter position coding occur during an early orthographic stage, with phonological processing occurring subsequently. As a result, no matter what the input language is, the implication is that orthographic processing should always dominate the visual word recognition process with morphemic and syllabic/phonological processing playing a secondary role. Hence, the default assumption would seem to be that the effects reported in the present article are orthographically based.

In summary, the present experiments showed significant repetition and TC priming effects in the text orientations investigated here (e.g., left-to-right horizontal, top-to-bottom, right-to-left horizontal and bottom-to-top orientations). These findings suggest that in a logographic script, the processes which mediate these form priming effects occur at an abstract level of representation, supporting Witzel et al.'s (2011) abstract letter unit account over any perceptual learning account. How models of orthographic coding can fully explain these results remains an issue for future model development. Before doing so, however, it would seem to be worthwhile to at least investigate the possibility that some of the priming effects observed here may not be orthographic but may be either morphemic or syllabic/phonological and, hence, would not need to be explained by models of orthographic coding.

References

- Adelman, J. S. (2011). Letters in time and retinotopic space. *Psychological Review*, 118, 570–582. http://dx.doi.org/10.1037/a0024811
- Baayen, R. H. (2008). Analyzing linguistic data: A practical introduction to statistics using R Processing. New York, NY: Cambridge University Press. http://dx.doi.org/10.1017/CBO9780511801686
- Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with crossed random effects for subjects and items. *Journal of Memory and Language*, 59, 390–412. http://dx.doi.org/10.1016/j.jml .2007.12.005
- Balota, D. A., Aschenbrenner, A. J., & Yap, M. J. (2013). Additive effects of word frequency and stimulus quality: The influence of trial history and data transformations. *Journal of Experimental Psychology: Learning, Memory, and Cognition, 39*, 1563–1571. http://dx.doi.org/10.1037/ a0032186
- Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. *Journal of Statistical Software*, 67, 1–48. http://dx.doi.org/10.18637/jss.v067.i01
- Bolker, B. (2018). GLMM FAQ. Retrieved from https://bbolker.github.io/ mixedmodels-misc/glmmFAQ.html
- Cai, Q., & Brysbaert, M. (2010). SUBTLEX-CH: Chinese word and character frequencies based on film subtitles. *PLoS ONE*, 5, e10729. http://dx.doi.org/10.1371/journal.pone.0010729
- Chang, C. H. C., Pallier, C., Wu, D. H., Nakamura, K., Jobert, A., Kuo, W. J., & Dehaene, S. (2015). Adaptation of the human visual system to the statistics of letters and line configurations. *NeuroImage*, 120, 428– 440. http://dx.doi.org/10.1016/j.neuroimage.2015.07.028
- Crepaldi, D., Rastle, K., Coltheart, M., & Nickels, L. (2010). "Fell" primes "fall," but does "bell" prime "ball"? Masked priming with irregularly inflected primes. *Journal of Memory and Language*, 63, 83–99. http:// dx.doi.org/10.1016/j.jml.2010.03.002
- Crepaldi, D., Rastle, K., Davis, C. J., & Lupker, S. J. (2013). Seeing stems everywhere: Position-independent identification of stem morphemes. *Journal of Experimental Psychology: Human Perception and Performance*, 39, 510–525. http://dx.doi.org/10.1037/a0029713
- Davis, C. J. (1999). The self-organising lexical acquisition and recognition (SOLAR) model of visual word recognition. Sydney, New South Wales, Australia: University of New South Wales.
- Davis, C. J. (2010). The spatial coding model of visual word identification. *Psychological Review*, 117, 713–758. http://dx.doi.org/10.1037/ a0019738
- Davis, C., Kim, J., & Forster, K. I. (2008). Being forward not backward: Lexical limits to masked priming. *Cognition*, 107, 673–684. http://dx .doi.org/10.1016/j.cognition.2007.07.016
- Dehaene, S., Cohen, L., Sigman, M., & Vinckier, F. (2005). The neural code for written words: A proposal. *Trends in Cognitive Sciences*, 9, 335–341. http://dx.doi.org/10.1016/j.tics.2005.05.004
- Diependaele, K., Sandra, D., & Grainger, J. (2009). Semantic transparency and masked morphological priming: The case of prefixed words. *Mem*ory & Cognition, 37, 895–908. http://dx.doi.org/10.3758/MC.37.6.895
- Drews, E., & Zwitserlood, P. (1995). Morphological and orthographic similarity in visual word recognition. *Journal of Experimental Psychol*ogy: Human Perception and Performance, 21, 1098–1116. http://dx.doi .org/10.1037/0096-1523.21.5.1098
- Duñabeitia, J. A., Dimitropoulou, M., Grainger, J., Hernández, J. A., & Carreiras, M. (2012). Differential sensitivity of letters, numbers, and symbols to character transpositions. *Journal of Cognitive Neuroscience*, 24, 1610–1624. http://dx.doi.org/10.1162/jocn_a_00180
- Fox, J., & Weisberg, S. (2016). car: Companion to applied regression (R package version 2.1–2). Retrieved from http://socserv.socsci.mcmaster .ca/jfox/Books/Companion

- Franks, J. J., Bilbrey, C. W., Lien, K. G., & McNamara, T. P. (2000). Transfer-appropriate processing (TAP) and repetition priming. *Memory* & Cognition, 28, 1140–1151. http://dx.doi.org/10.3758/BF03211815
- Gómez, P., Ratcliff, R., & Perea, M. (2008). The overlap model: A model of letter position coding. *Psychological Review*, 115, 577–600. http:// dx.doi.org/10.1037/a0012667
- Grainger, J. (2016). Orthographic processing and reading. Visible Language, 50, 80-101.
- Grainger, J. (2018). Orthographic processing: A "mid-level' vision of reading: The 44th Sir Frederic Bartlett Lecture. *Quarterly Journal of Experimental Psychology*, 71, 335–359. http://dx.doi.org/10.1080/ 17470218.2017.1314515
- Grainger, J., Dufau, S., & Ziegler, J. C. (2016). A vision of reading. *Trends in Cognitive Sciences*, 20, 171–179. http://dx.doi.org/10.1016/j.tics.2015 .12.008
- Grainger, J., & Holcomb, P. J. (2009). Watching the word go by: On the time-course of component processes in visual word recognition. *Language and Linguistics Compass*, *3*, 128–156. http://dx.doi.org/10.1111/ j.1749-818X.2008.00121.x
- Grainger, J., & Jacobs, A. M. (1996). Orthographic processing in visual word recognition: A multiple read-out model. *Psychological Review*, 103, 518–565. http://dx.doi.org/10.1037/0033-295X.103.3.518
- Grainger, J., & Van Heuven, W. J. B. (2003). Modeling letter position coding in printed word perception: he mental lexicon. New York, NY: Nova Science. Retrieved from http://sites.univ-provence.fr/wlpc/ pagesperso/grainger/CHAPTERS/Grainger&van-Heuven03.pdf
- Gu, J., & Li, X. (2015). The effects of character transposition within and across words in Chinese reading. *Attention, Perception, & Psychophysics*, 77, 272–281. http://dx.doi.org/10.3758/s13414-014-0749-5
- Gu, J., Li, X., & Liversedge, S. P. (2015). Character order processing in Chinese reading. Journal of Experimental Psychology: Human Perception and Performance, 41, 127–137. http://dx.doi.org/10.1037/a0038639
- Guerrera, C., & Forster, K. (2008). Masked form priming with extreme transposition. *Language and Cognitive Processes*, 23, 117–142. http:// dx.doi.org/10.1080/01690960701579722
- Ida, K., Nakayama, M., & Lupker, S. J. (2015). The functional phonological unit of Japanese-English bilinguals is language dependent: Evidence from masked onset and mora priming effects. *Japanese Psychological Research*, 57, 38–49. http://dx.doi.org/10.1111/jpr.12066
- Kolers, P. A., & Perkins, D. N. (1975). Spatial and ordinal components of form perception and literacy. *Cognitive Psychology*, 7, 228–267. http:// dx.doi.org/10.1016/0010-0285(75)90011-0
- Kolers, P. A., & Roediger, H. L., III. (1984). Procedures of mind. *Journal* of Verbal Learning & Verbal Behavior, 23, 425–449. http://dx.doi.org/ 10.1016/S0022-5371(84)90282-2
- Ktori, M., Kingma, B., Hannagan, T., Holcomb, P. J., & Grainger, J. (2014). On the time-course of adjacent and non-adjacent transposedletter priming. *Journal of Cognitive Psychology*, 26, 491–505. http://dx .doi.org/10.1080/20445911.2014.922092
- Lenth, R. V. (2016). Least-squares means: The R package lsmeans. Journal of Statistical Software, 69, 1–33. http://dx.doi.org/10.18637/jss.v069.i01
- Lété, B., & Fayol, M. (2013). Substituted-letter and transposed-letter effects in a masked priming paradigm with French developing readers and dyslexics. *Journal of Experimental Child Psychology*, 114, 47–62. http://dx.doi.org/10.1016/j.jecp.2012.09.001
- Levy, R. (2014). Using R formulae to test for main effects in the presence of higher-order interactions. Retrieved from https://arxiv.org/abs/1405 .2094
- Lo, S., & Andrews, S. (2015). To transform or not to transform: Using generalized linear mixed models to analyse reaction time data. *Frontiers* in Psychology, 6, 1171. http://dx.doi.org/10.3389/fpsyg.2015.01171
- Massol, S., Duñabeitia, J. A., Carreiras, M., & Grainger, J. (2013). Evidence for letter-specific position coding mechanisms. *PLoS ONE*, 8, e68460. http://dx.doi.org/10.1371/journal.pone.0068460

- McClelland, J. L., & Rumelhart, D. E. (1981). An interactive activation model of context effects in letter perception: Part I. An account of basic findings. *Readings in Cognitive Science: A Perspective from Psychology* and Artificial Intelligence, 88, 375–407. http://dx.doi.org/10.1037/0033-295X.88.5.375
- Morris, A. L., & Still, M. L. (2012). Orthographic similarity: The case of "reversed anagrams." *Memory & Cognition*, 40, 779–790. http://dx.doi .org/10.3758/s13421-012-0183-7
- New, B., Brysbaert, M., Segui, J., Ferrand, L., & Rastle, K. (2004). The processing of singular and plural nouns in French and English. *Journal* of Memory and Language, 51, 568–585. http://dx.doi.org/10.1016/j.jml .2004.06.010
- Norris, D. (2006). The Bayesian reader: Explaining word recognition as an optimal Bayesian decision process. *Psychological Review*, 113, 327– 357. http://dx.doi.org/10.1037/0033-295X.113.2.327
- Norris, D., & Kinoshita, S. (2012). Reading through a noisy channel: Why there's nothing special about the perception of orthography. *Psychological Review*, 119, 517–545. http://dx.doi.org/10.1037/a0028450
- Perea, M., & Lupker, S. J. (2003a). Does jugde activate COURT? Transposed-letter similarity effects in masked associative priming. *Memory & Cognition*, 31, 829–841. http://dx.doi.org/10.3758/BF03196438
- Perea, M., & Lupker, S. J. (2003b). Transposed-letter confusability effects in masked form priming. In S. Kinoshita & S. J. Lupker (Eds.), *Masked priming: The state of the art* (pp. 97–120). Hove, United Kingdom: Psychology Press.
- Perea, M., & Lupker, S. J. (2004). Can CANISO activate CASINO? Transposed-letter similarity effects with nonadjacent letter positions. *Journal of Memory and Language*, 51, 231–246. http://dx.doi.org/10 .1016/j.jml.2004.05.005
- Perea, M., Marcet, A., & Fernández-López, M. (2018). Does letter rotation slow down orthographic processing in word recognition? *Psychonomic Bulletin & Review*. Advance online publication. http://dx.doi.org/10 .3758/s13423-017-1428-z
- Perea, M., Nakatani, C., & van Leeuwen, C. (2011). Transposition effects in reading Japanese Kana: Are they orthographic in nature? *Memory & Cognition*, 39, 700–707. http://dx.doi.org/10.3758/s13421-010-0052-1
- Perea, M., & Pérez, E. (2009). Beyond alphabetic orthographies: The role of form and phonology in transposition effects in Katakana. *Language* and Cognitive Processes, 24, 67–88. http://dx.doi.org/10.1080/ 01690960802053924
- Perea, M., Winskel, H., & Gómez, P. (2018). How orthographic-specific characteristics shape letter position coding: The case of Thai script. *Psychonomic Bulletin & Review*, 25, 416–422. http://dx.doi.org/10 .3758/s13423-017-1279-7
- Qu, Q., Damian, M. F., & Li, X. (2016). Phonology contributes to writing: Evidence from a masked priming task. *Language, Cognition and Neuroscience*, 31, 251–264. http://dx.doi.org/10.1080/23273798.2015 .1091086
- R Core Team. (2015). R: A language and environment for statistical computing [Internet]. Vienna, Austria: R Foundation for Statistical Computing. URL http://www.R-project.org/
- Schiller, N. O. (1999). Masked syllable priming of English nouns. Brain and Language, 68, 300–305. http://dx.doi.org/10.1006/brln.1999.2109
- Schneider, W., Eschman, A., & Zuccolotto, A. (2002). E-Prime: User's guide. Pittsburgh, PA: Psychology Software Tools, Incorporated.
- Singmann, H., & Kellen, D. (2018). An introduction to mixed models for experimental psychology. In D. Spieler & E. Schumacher (Eds.), *New methods in cognitive psychology*. Milton Park, United Kingdom: Taylor & Francis Group. Retrieved from http://singmann.org/download/ publications/singmann_kellen-introduction-mixed-models.pdf
- Taft, M., & Nguyen-Hoan, M. (2010). A sticky stick? The locus of morphological representation in the lexicon. *Language and Cognitive Processes*, 25, 277–296. http://dx.doi.org/10.1080/01690960903043261

- Taft, M., Zhu, X., & Peng, D. (1999). Positional specificity of radicals in Chinese character recognition. *Journal of Memory and Language*, 40, 498–519. http://dx.doi.org/10.1006/jmla.1998.2625
- Tse, C.-S., Yap, M. J., Chan, Y.-L., Sze, W. P., Shaoul, C., & Lin, D. (2017). The Chinese Lexicon Project: A megastudy of lexical decision performance for 25,000+ traditional Chinese two-character compound words. *Behavior Research Methods*, 49, 1503–1519. http://dx.doi.org/ 10.3758/s13428-016-0810-5
- Velan, H., & Frost, R. (2009). Letter-transposition effects are not universal: The impact of transposing letters in Hebrew. *Journal of Memory and Language*, 61, 285–302. http://dx.doi.org/10.1016/j.jml.2009.05.003
- Vergara-Martínez, M., Perea, M., Gómez, P., & Swaab, T. Y. (2013). ERP correlates of letter identity and letter position are modulated by lexical frequency. *Brain and Language*, 125, 11–27. http://dx.doi.org/10.1016/ j.bandl.2012.12.009
- Whitney, C. (2001). How the brain encodes the order of letters in a printed word: The SERIOL model and selective literature review. *Psychonomic Bulletin & Review*, 8, 221–243. http://dx.doi.org/10.3758/BF03196158
- Witzel, N., Qiao, X., & Forster, K. (2011). Transposed letter priming with horizontal and vertical text in Japanese and English readers. *Journal of Experimental Psychology: Human Perception and Performance*, 37, 914–920. http://dx.doi.org/10.1037/a0022194
- Wong, A. W. K., Wu, Y., & Chen, H. C. (2014). Limited role of phonology in reading Chinese two-character compounds: Evidence from an ERP

study. *Neuroscience*, 256, 342–351. http://dx.doi.org/10.1016/j .neuroscience.2013.10.035

- Wu, Y., Tsang, Y. K., Wong, A. W. K., & Chen, H. C. (2017). The processing of homographic morphemes in Chinese: An ERP study. *Language, Cognition and Neuroscience*, 32, 102–116. http://dx.doi.org/ 10.1080/23273798.2016.1227857
- Yang, J. (2013). Preview effects of plausibility and character order in reading Chinese transposed words: Evidence from eye movements. *Journal of Research in Reading*, 36 (Suppl. 1), S18–S34. http://dx.doi .org/10.1111/j.1467-9817.2013.01553.x
- You, W., Zhang, Q., & Verdonschot, R. G. (2012). Masked syllable priming effects in word and picture naming in Chinese. *PLoS ONE*, 7, e46595. http://dx.doi.org/10.1371/journal.pone.0046595
- Zhang, B., & Peng, D. (1992). Decomposed storage in the Chinese lexicon. Advances in Psychology, 90, 131–149. http://dx.doi.org/10.1016/S0166-4115(08)61890-7
- Zhou, X., & Marslen-Wilson, W. D. (2009). Pseudohomophone effects in processing Chinese compound words. *Language and Cognitive Processes*, 24, 1009–1038. http://dx.doi.org/10.1080/01690960802174514
- Zhou, X., Marslen-Wilson, W., Taft, M., & Shu, H. (1999). Morphology, orthography, and phonology in reading Chinese compound words. *Lan-guage and Cognitive Processes*, 14, 525–565. http://dx.doi.org/10.1080/ 016909699386185

Appendix

Word Stimuli Used in the Experiments

	Condition				
Target	Repetition prime	TC prime	Classic SC prime	Unrelated prime	External SC prime
遮遮掩掩	遮遮掩掩	遮掩遮掩	遮救过掩	新奥尔良	救掩遮过
有所不同	有所不同	有不所同	有扑走同	总的来说	扑不所走
突如其来	突如其来	突其如来	突探古来	防毒面具	探其如古
完美无缺	完美无缺	完无美缺	完刹除缺	随时随地	刹无美除
了如指掌	了如指掌	了指如掌	了船标掌	引人注意	船指如标
出人意料	出人意料	出意人料	出违控料	时时刻刻	违意人控
微不足道	微不足道	微足不道	微对字道	深思熟虑	对足不字
有线电视	有线电视	有电线视	有眼泣视	每时每刻	眼电线泣
截然不同	截然不同	截不然同	截空款同	改头换面	空不然款
水深火热	水深火热	水火深热	水淡落热	独一无二	淡火深落
不值一提	不值一提	不一值提	不上仰提	精疲力竭	上一值仰
为时过早	为时过早	为过时早	为行义早	一举一动	行过时义
不省人事	不省人事	不人省事	不贯守事	种族主义	贯人省守
总而言之	总而言之	总言而之	总模品之	阿拉斯加	模言而品
精彩绝伦	精彩绝伦	精绝彩伦	精播秧伦	无时无刻	播绝彩秧
竭尽全力	竭尽全力	竭全尽力	竭违行力	指指点点	违全尽行
不切实际	不切实际	不实切际	不加小际	无足轻重	加实切小
第一夫人	第一夫人	第夫一人	第集力人	重归于好	集夫一力
自以为是	自以为是	自为以是	自信取是	别无选择	信为以取
情不自禁	情不自禁	情自不禁	情审规禁	福尔摩斯	审自不规
混为一谈	混为一谈	混一为谈	混矿化谈	天翻地覆	矿一为化
挺身而出	挺身而出	挺而身出	挺封制出	才华横溢	封而身制
电子游戏	电子游戏	电游子戏	电地态戏	事与愿违	地游子态
光明正大	光明正大	光正明大	光充用大	自言自语	充正明用
心不在焉	心不在焉	心在不焉	心逃陷焉	万无一失	逃在不陷

This article is intended solely for the personal use of the individual user and is not to be disseminated broadly

This document is copyrighted by the American Psychological Association or one of its allied publishers.

Appendix (continued)

	Condition				
Target	Repetition prime	TC prime	Classic SC prime	Unrelated prime	External SC prime
乳臭未干	乳臭未干	乳未臭干	乳脚瘤干	可不可以	脚未臭瘤
不久以后	不久以后	不以久后	不送谢后	精力充沛	送以久谢
无论如何	无论如何	无如论何	无监取何	胡言乱语	监如论取
前功尽弃	前功尽弃	前尽功弃	前战族弃	莫名其妙	战尽功族
从未有过	从禾有过	从有禾过	从木舢过	小题大做	木有禾舢
胡说八追	胡说八道	胡八况追	胡增退迫	刀町已晩	增八 况 退
正投无路	正 投 尤 路 下 完 '中 心	正 无投路 下:11 完心	正 <u>知</u> 见路 下 网络心	告去个正 	到 尤 按见 敏地会势
下正次心	下正伏心	下伏正心	下胜琢心	顶 世 妖 俗 土 武 年 十	件 一 一 一 一 一 一 一 一 一 一 一 一 一
小可连喇。	小り珪峒	小 生 可 嘲 	11 天朝 息井虫国	不成十八	1- 建可共
刮日相看	到日相看	刮相日看	山辺に石丸	计 退 之 日	辺相目下
刀枪不入	刀枪不入	刀不枪入	刀拼开入	一丁点儿	拼不检开
无动于衷	无动于衷	无于动衷	无下定衷	大名鼎鼎	下于动定
身不由己	身不由己	身由不己	身闭室己	滔滔不绝	闭由不室
乱七八糟	乱七八糟	乱八七糟	乱法议糟	一天到晚	法八七议
分道扬镳	分道扬镳	分扬道镳	分满船镳	脱胎换骨	满扬道船
尽管如此	尽管如此	尽如管此	尽录出此	激动人心	录如管出
远走高飞	远走高飞	远高走飞	远安年飞	一动不动	安高走年
辩护律帅 	解护律师 デー・デー	新律护师	辩游区 师	大缘无故	游律护区
<u>総</u> 无可総 工 理 開 河	<u> </u>	<u>忽</u> 可无怨	彩互决忍	实话实说	<u> </u>
た埋取同	た埋取闹	た取埋向	无祭化闹 工招险士	换句诂况	祭取埋化
尤 懈 刂 击 动 曰 洒 스	无 件 り 击 	九り懈击	た 坊 际 古	全诞翻入	おり隣际
) 月月 月月 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日	や に 相会 かんし かんし かんし かんし かんし かんしょう かんしょう ひょう ひょう ひょう ひょう ひょう ひょう ひょう ひょう ひょう ひ) 内心にご (加売)	内心 友会 かんしん	大天 ^师 师	心 酒 尾 夜 へ 面 门 辻
价值连城	价值连城			田所当然	
高无田外	高无用外	高田无外	高芒执外	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	中 王 臣 领 王 田 无 执
炮然一新	<u>樂</u> 況所定 焕然一新	燥一然新	燥国士新	不为人知	国一然士
光彩照人	光彩照人	光照彩人	光人场人	格格不入	人照彩场
高速公路	高速公路	高公速路	高门岸路	除此之外	门公速岸
难以忘怀	难以忘怀	难忘以怀	难睡幕怀	偷偷摸摸	睡忘以幕
最高法院	最高法院	最法高院	最蛋碎院	说来话长	蛋法高碎
恐怖主义	恐怖主义	恐主怖义	恐椅窗义	全神贯注	椅主怖窗
袖手旁观	袖手旁观	袖旁手观	袖白棉观	长大成人	白旁手棉
开非如此	开非如此	开如非此	开献奏此	一方水逸	献如非奏
多官内争	多官肉事	多内官争	多 生际 争	此时此刻	<u>住</u> 州官际
一	一场砌床	一树塚凉	一同投床	也别走说 二王氏知	向 砌 翊 煜 动 拉 堀 坤
日畑以奉	日畑以奉	日以畑奉	日瓜州奉	一九別丸	<u> </u>
心袖不宁	心袖不宁	心不神空	心披下宁	黑 西 哥 人	将 夜 //
光天化日	光天化日	光化天日	光阅件日	一声不吭	阅化天件
歇斯底里	歇斯底里	歇底斯里	歇补去里	成千上万	补底斯去
一路顺风	一路顺风	一顺路风	一协心风	鬼鬼祟祟	协顺路心
无所不能	无所不能	无不所能	无杀口能	合情合理	杀不所口
有史以来	有史以来	有以史来	有配数来	难以忍受	配以史数
无处不在	无处不在	无不处在	无惜重在	一网打尽	惜不处重
告一段落	告一段落	告段一落	告跨上落	毫不犹豫	跨段一上
好个谷易	好个容易	好谷个易	好偿赐易	筋波力尽	偿谷个赐 (在工作者
有鉴于此	月 鉴于此	有于釜此	月 化 者 比	加言蜚 语 名名昭昭	<u> </u>
感激个尽	感激个尽	感个激尽	感佩见尽	む'む'服 服 新 一 家 远	佩 个激见 预化复位
—— 判化 呶 难以 户 册	- 単化映 - 単い 白 歩	— 化 彰 呶	一次区域	如言重 G 千 百 下 确	顶化单位 按 户 以 起
准	本 以 加 凶 千 裁 难 译	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	千私诈逄	一 英 刀 啪 诺 田 尔 奖	私难裁论
東手无策	東手无策	東无手策	東知理策	心烦音乱	知无手理
白手起家	六了九次 白手起家	白起手家	小八 <u></u> 一 一 一 一 一 一 一 一 一 一 一 一 一	恰到好外	⁽¹⁾ 定記手船
一无所获	一无所获	一所无获	一戴入获	无话可说	戴所无入
自作主张	自作主张	自主作张	自敬人张	不知所云	敬主作人
诸如此类	诸如此类	诸此如类	诸辞示类	成百上千	辞此如示
一如既往	一如既往	一既如往	一门债往	置身事外	门既如债
犹豫不决	犹豫不决	犹不豫决	犹战方决	全力以赴	战不豫方
毫无疑问	毫无疑问	毫疑无问	毫呈状问	鸡皮疙瘩	呈疑无状

Appendix (continued)

	Condition						
Target	Repetition prime	TC prime	Classic SC prime	Unrelated prime	External SC prime		
直升飞机	直升飞机	直飞升机	直祝望机	虚张声势	祝飞升望		
绝大多数	绝大多数	绝多大数	绝空漏数	天衣无缝	空多大漏		
开门见山	开门见山	开见门山	开籍著山	一模一样	籍见门著		
大海捞针	大海防针	大防海针	大官 政针	半速向发	官捞海政		
丁爭兀শ 物理受宠	丁爭乙们	丁乙爭സ 物受理宏	丁练有个物物生态之	重 重 低 切 十 告 電 零	练乙争有 住受理心		
初生子家 不合时官	初生子家	初子垤豕 不时合官	不分期官	大次 田 <u>建</u>	加日本		
视而不见	视而不见	视不而见	视融出见	所作所为	融不而出		
拭目以待	拭目以待	拭以目待	拭收载待	一触即发	收以目载		
见不得人	见不得人	见得不人	见画掉人	土生土长	画得不掉		
中产阶级	中产阶级	中阶产级	中冲于级	司法部长	冲阶产于 第111章		
受宠若惊 左复 左	受宠若惊	受 若 宠 惊 伝 点 伝 点 点 点 点 点 点 点 点 点 点 点 点 点 点 点 点	受仰看惊	高尔天球	仰若宠者		
午复一午 班以罢信	午复一午	午一复午 班罢以 <i>住</i>	牛饭根牛		饭一复根 左罟\\) 店		
<i>年以且</i> 后 一空不通	本以且信 一空不通	本重以信 一不空通	本不用后	人存休险	不且以旧 甜不窍时		
史无前例	史无前例	史前无例	中肢下例	一般来说	JH . L . T 2 H J		
一事无成	一事无成	一无事成	一细柔成	隐姓埋名			
电话会议	电话会议	电会话议	电摸开议	谢天谢地			
并肩作战	并肩作战	并作肩战	并锯工战	另一方面			
到此为止	到此为止	到为此止	到消降止	闭路电视			
坐以待毙	坐以待毙	坐待以毙	坐此住毙	无拘无束			
指于画脚	指于画脚	指画于脚	指丧权脚	一相情愿			
辛辛古古 以院 下 一	辛辛古古	半古半古	半音気古いの第二	非题伪目			
以 <u>防力</u> 一 起死回生	起死回生	以 <u>万</u> 防一 起回死生	以解手一	第二世外 御斗彻尾			
活蹦乱跳	活蹦乱跳	活乱蹦跳	活婚宅跳	得寸讲尺			
无精打采	无精打采	无打精采	无牵于采	提心吊胆			
相提并论	相提并论	相并提论	相外核论	以牙还牙			
容光焕发	容光焕发	容焕光发	容备防发	从天而降			
众所周知	众所周知	众周所知	众跌退知	赴汤蹈火			
家在鼓里	家在鼓里	家鼓在里	家口记里	一臂之力			
十字路口	十字路口	十路子口	十附即口	シリンプネーズ			
日找杯灰 合在日夕	日找杯灰	日州找州 合日在力	日余向火 合非催力	个仅如此 这会为止			
逍遥法外	道谣法外	道法谣外	道原轴外	自然而然			
不同寻常	不同寻常	不寻同常	不相视常	发号施令			
打草惊蛇	打草惊蛇	打惊草蛇	打球具蛇	不管怎样			
出乎意料	出乎意料	出意乎料	出盘出料	翿翿实实			
无线电话	无线电话	无电线话	无相效话	死里逃生			
惊慌失措	惊慌失措	惊失慌措	惊割心措	善解人意			
公共场所	公共场所	公场共所	公应于所	职业追德			
主物子家 大王一场	上初子家 大王—场	生子初家 大一干场	上 机 夕 承 大 实 佚 场	ビスシー			
八丁 吻	八丁 吻 出人头地	八一场	八天贝吻出落户地	一			
无关紧要	五关紧要	五紫关要	五祖万之	全心全意			
至关重要	至关重要	至重关要	至照效要	白马王子			
整装待发	整装待发	整待装发	整灯口发	轻而易举			
人际关系	人际关系	人关际系	人出服系	种族歧视			
名副其实	名副其实	名其副实	名病室实	一清二楚			
融为一体	融为一体	融一为体	融缘巧体	业历山大			
里昀復撤 王武左八	上 単 単 復 御 王 述 左 八	里復桕擜 工工」	里大灶辙 五寸注八	削 <i>所</i> 不有 冬 种 冬 样			
井产主♡	井产主♡	111000日 共主 主 マ	オ家丘♥	市市市市			
八, <u>一</u> 久 不顾一切	への主人	ハエクス	ハホスへ	无可奉告			
百万富翁	百万富翁	百富万翁	百轻写翁	游手好闲			
重操旧业	重操旧业	重旧操业	重假于业	例行公事			
出类拔萃	出类拔萃	出拔类萃	出受涨萃	为所欲为			
绳之以法	绳之以法	绳以之法	绳水态法	天主教徒			
毫不留情	毫不留情	毫留不情	毫理石情	孤注一掷			
一见钟情	一见钟情	一钟见情	一国梁情	目暴自弃			

YANG, CHEN, SPINELLI, AND LUPKER

Appendix (continued)

	Condition				
Target	Repetition prime	TC prime	Classic SC prime	Unrelated prime	External SC prime
自作聪明	自作聪明	自聪作明	自用军明	脱口而出	
自由主义	自由主义	自主由义	自自渍义	身无分文	
引人注目	引人注目	引注人目	引名物目	无与伦比	
平安无事	平安无事	平无安事	平阅礼事	与此同时	
不知所措	不知所措	不所知措	不法教措	扪心自问	
无济于事	无济于事	无于济事	无实场事	循规蹈矩	
华而不实	华而不实	华不而实	华抗党实	小道消息	
改讨白新	改过自新	改自讨新	改亏尽新	飘飘欲仙	
迫不及待	迫不及待	迫及不待	迫世境待	动手动脚	
田庸置疑	田庸署疑	田罟庸疑	田师说疑	从那之后	
<u> </u>	夜以继日	安望 扁	夜 退幺日	言归正传	
特种部队	发	快速以口	は一日の日本	四三百万五百万	
麻林 広古	南林匹古	雨兀林古	闲 了	有部一日	
随心所欲	随心所欲	随所心欲	英侯了九 随多题欲	空空在在	
远心// to	石可收拾	石山可於	不应过经	서 소 제 문	
レジロの	化学反应	化反学应	2011	—————————————————————————————————————	
化子反应 女子甘重		6.戊子应 ————————————————————————————————————		有土之牛	
石儿共争 不过加此	石九共事 조过加此	石共九争	····································		
个 <u>也</u> 如此 王夕小云	下过如此	个如 <u></u> 过此 王小夕六	千上洲此王元	<u> </u>	
尤石小平 训练方案	无石小平 训练 左 害	九小石平 汕方佐事	无 內	良初中母	
<u>训练</u> 伯条 罢う不理	川尓伯糸 安うて田	川行练系 罢不う理	· · · · · · · · · · · · · · · · · · ·	准心社态	
直之个理		直个之理 ヒエムロ	直参火理	世世 古 五	
与 双个回 士信 小权	· · · · · · · · · · · · · · · · · · ·	<u> </u>	· · · · · · · · · · · · · · · · · · ·	心半气州	
大惊小怪	大惊小怪	大小惊怪	人 金条 佺 四 伝 址	感作用手	
一席之地	一席之地	ーン席地	一征短地	修个忍昭	
九偕之议	九稽之谈	九之偕议	九水龙议	吴名昭有	
非同于常	非同寻常	非守问吊	非遇合常	卷土里米 ※日第4	
止当防卫	止当防卫	止防当卫	正则附卫	巡回演出	
哺乳 切物	· · · · · · · · · · · · · · · · · · ·	伸切乳物	· · · · · · · · · · · · · · · · · · ·	五角大 楼	
世界大战	世界大战	世大界战	世心盾战	里枪 <u>些</u> 与	
洗 耳 恭听	洗 月 恭听	洗 恭	· · · · · · · · · · · · · · · · · · ·	目欺欺人	
一九所有	一九所有	一所九有	一牟上有	逃之天天	
九家可归	九家 可归	九可家归	大奋命归	简而言之	
孤身一人	孤身一人	孤一身人	孤纳卜人	隐形眼镜	
蛛丝马迹	蛛丝马迹	蛛马丝迹	蛛调备迹	死路一条	
脱颖而出	脱颖而出	脱而颖出	脱存养出	发因斯坦	
梦想成真	梦想成真	梦成想真	梦接议真	想方设法	
安然无恙	安然无恙	安无然恙	安作端恙	基督教徒	
防弹背心	防弹背心	防背弹心	防上战心	不择手段	
后会有期	后会有期	后有会期	后军灾期	有限公司	
梦寐以求	梦寐以求	梦以寐求	梦怠步求	当务之急	
本职工作	本职工作	本工职作	本出落作	大喊大叫	
完好无损	完好无损	完无好损	完转途损	婆婆妈妈	
严阵以待	严阵以待	严以阵待	严枪标待	精疲力尽	
不可思议	不可思议	不思可议	不白挨议	长话短说	
守口如瓶	守口如瓶	守如口瓶	守授兵瓶	翻天覆地	
尽力而为	尽力而为	尽而力为	尽求智为	水落石出	
轻举妄动	轻举妄动	轻妄举动	轻调台动	似曾相识	

Note. All these stimuli were used in Experiment 1. The first half of the stimuli was used in Experiment 2. The first 100 stimuli were used in Experiment 3. The second half of the stimuli was used in Experiment 4. Note that the external controlled condition for the transposition condition (SC) primes were only used in Experiment 3.

Received January 26, 2018

Revision received June 8, 2018

Accepted June 22, 2018 ■